Effect of chromate stress on Escherichia coli K-12.
نویسندگان
چکیده
The nature of the stress experienced by Escherichia coli K-12 exposed to chromate, and mechanisms that may enable cells to withstand this stress, were examined. Cells that had been preadapted by overnight growth in the presence of chromate were less stressed than nonadapted controls. Within 3 h of chromate exposure, the latter ceased growth and exhibited extreme filamentous morphology; by 5 h there was partial recovery with restoration of relatively normal cell morphology. In contrast, preadapted cells were less drastically affected in their morphology and growth. Cellular oxidative stress, as monitored by use of an H2O2-responsive fluorescent dye, was most severe in the nonadapted cells at 3 h postinoculation, lower in the partially recovered cells at 5 h postinoculation, and lower still in the preadapted cells. Chromate exposure depleted cellular levels of reduced glutathione and other free thiols to a greater extent in nonadapted than preadapted cells. In both cell types, the SOS response was activated, and levels of proteins such as SodB and CysK, which can counter oxidative stress, were increased. Some mutants missing antioxidant proteins (SodB, CysK, YieF, or KatE) were more sensitive to chromate. Thus, oxidative stress plays a major role in chromate toxicity in vivo, and cellular defense against this toxicity involves activation of antioxidant mechanisms. As bacterial chromate bioremediation is limited by the toxicity of chromate, minimizing oxidative stress during bacterial chromate reduction and bolstering the capacity of these organisms to deal with this stress will improve their effectiveness in chromate bioremediation.
منابع مشابه
Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction.
Chromate [Cr(VI)] is a serious environmental pollutant, which is amenable to bacterial bioremediation. NfsA, the major oxygen-insensitive nitroreductase of Escherichia coli, is a flavoprotein that is able to reduce chromate to less soluble and less toxic Cr(III). We show that this process involves single-electron transfer, giving rise to a flavin semiquinone form of NfsA and Cr(V) as intermedia...
متن کاملChromate Reductase YieF from Escherichia coli Enhances Hexavalent Chromium Resistance of Human HepG2 Cells
Hexavalent chromium (Cr(VI)) is a serious environmental pollutant and human toxicant. Mammalian cells are very sensitive to chromate as they lack efficient chromate detoxifying strategy, e.g., chromate-reducing genes that are widely present in prokaryotes. To test whether introduction of prokaryotic chromate-reducing gene into mammalian cells could render higher chromate resistance, an Escheric...
متن کاملMolybdate reduction by Escherichia coli K-12 and its chl mutants.
During anaerobic growth, Escherichia coli can reduce phosphomolybdate. The reduction can also be carried out by washed cells suspended in buffer at pH 5.7. Phosphate, molybdate, glucose, cells, and anaerobic conditions are required. Reduction is inhibited by 200 microM chromate, 290 microM nitrite, 10 mM tungstate, or 20 mM cysteine. Wild-type (chl+) cells are inhibited by addition of 200 micro...
متن کاملThe Effect of Heat Shock on Production of Recombinant Human Interferon Alpha 2a (rhIFN α -2a) by Escherichia coli
Recombinant human interferon alpha 2a (rhIFN α -2a) production and cell growth were monitored in a set of genetically modified E. coli strains (MSD1519, MSD1520, MSD 1521, MSD 1522, MSD 1523) producing rhIFN α -2a. The growth was followed at OD 600 nm, changes in cell physiology were detected by pyrolysis mass spectrometry (PyMS) of cell biomass and recombinant protein production was determined...
متن کاملShort-chain chromate ion transporter proteins from Bacillus subtilis confer chromate resistance in Escherichia coli.
Tandem paired genes encoding putative short-chain monodomain protein members of the chromate ion transporter (CHR) superfamily (ywrB and ywrA) were cloned from genomic DNA of Bacillus subtilis strain 168. The transcription of the paired genes, renamed chr3N and chr3C, respectively, was shown to occur via a bicistronic mRNA generated from a promoter upstream of the chr3N gene. The chr3N and chr3...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 188 9 شماره
صفحات -
تاریخ انتشار 2006